
Q
u
a
li
t
y

N

u
g
g
e
t

www.asq.org 43

An Insider View of an
IEEE Standards Working Group

By Eva Freund

I have often been asked what it is like to participate in an
IEEE standards working group. My answer is always that
each group is different and I have enjoyed working on all
of them. Each of the working groups had its own culture
based on the background and role of the members, the
leadership of the chair, and the duration of the life of the
group. I have limited my discussion to my experiences
working on the P829 (IEEE Standard for Software and
System Test Documentation), the P730 (IEEE Standard
for Software Quality Assurance Processes), and the P1012
(IEEE Standard for System and Software Verification
and Validation) working groups.

With the P829 I was the vice chair and played the
role of teacher as I encouraged the chair to move the
standard away from being merely a documentation
standard and toward the concept of test as a process.
This was in response to the direction taken by the IEEE
standards group and the IEEE Standard for System and
Software Verification and Validation. The P829 working
group consisted of those who performed tests, managed
tests, and taught test and/or computer science courses
at the university level. They represented a variety of
national and international organizations.

The chairs first formulated an outline, which they
circulated to the working group. Based on the comments
they received, they modified the outline. The vice chair
drafted the text for the test process. The plan included
a description of test tasks undertaken throughout the
development life cycle, and a description of the methodol-
ogy for identifying and using integrity levels to guide the
breadth and depth of test activities. At the same time,
the chair was busy updating the text describing the test
documentation, including the new master test plan that
described the management of the test process. The draft
document was submitted to the entire working group
for their comments. The chair contacted the reviewers
to discuss the disposition of comments. Following the
review, the working group members reviewed the tables
and annexes and again received many comments.

At this juncture members of the working group
were invited to a face-to-face meeting to review the

comments. This small subgroup met a few times and
became responsible for creating a version suitable for
balloting and resolved comments received during the
ballot process. Due to the intense pre-ballot effort, the
ballot and reballot comments were minimal and easy
to resolve. The P829 standard was approved and issued
in 2008.

The P730 working group, consisting primarily of
quality assurance providers and managers, provided a
very different experience. The first chair was comfortable
letting the group identify its own direction and focus.
Under the chair’s leadership, members of the working
group were invited to participate in 10 face-to-face
meetings for the purpose of specifying the content and
direction of the standard. After these meetings, a small
subgroup was formed to expand on the work already
completed while the larger working group was asked to
review and comment on the multiple iterations of the
as-completed draft document. I was invited to participate
in the small subgroup.

The subgroup held numerous teleconference meet-
ings, sometimes several in a single month. The subgroup
agreed that all identified software quality assurance
(SQA) activities would implement IEEE Std 12207™.

Group members drafted text and circulated it to the
subgroup members between teleconference meetings,
and then discussed it during the teleconferences. This
allowed members to get to know each other and provided
opportunity for the dialogue required to resolve ambigui-
ties and disagreements. For example, members agreed
to include information on integrity levels to guide the
user in determining how much SQA was needed, but
they did not tie the integrity levels to specific activities
or tasks. Members agreed that tasks that did not directly
tie to IEEE Std 12207™ (IEEE Systems and Software
Engineering-Software Life Cycle Process) would not be
included in P730. They agreed that identifying inputs
and outputs for each task should be considered by
another working group for the next version, but they
would identify which SQA tasks began or occurred in
specific life-cycle phases.

www.asq.org

Q
u
a
li
t
y

N

u
g
g
e
t

44 SQP VOL. 16, NO. 3/© 2014, ASQ

The P1012 working group was unique, in my experi-
ence, because it retained its leadership and a core
membership over many years and many versions of the
standard. The 1986 version of this standard introduced
verification and validation (V&V) as part of the software
engineering process and described the contents of the
V&V plan. The 1998 version changed the focus to the
software V&V process. The 2004 version introduced the
concept of system V&V and the concept of an integrity
level. The 2012 version included the concept of hardware
V&V. The 2012 version also provides “stand-alone”
information. There is a section for all that is common,
a section that applies only to systems, a section that
applies only to hardware, and a section that applies to
software. The working group continues to improve the
standard, especially the section on hardware, and has
recruited hardware specialists for that purpose.

Unlike the P829 and P730 working groups, which
saw themselves as coming together for a limited period
of time for a single purpose, the P1012 working group
identifies as a continuing entity.

My understanding of system and software engineer-
ing, and the process of standards development, has been
expanded by participating in these three groups and
learning from their members and chairs:

•	 Understanding the different concerns of those
who manage versus those who execute

•	 Overlapping of activities and tasks among test,
SQA, and V&V and the conflict of who should
do what

•	 Demonstrating the need for a standard to be
general enough to encompass multiple industries
and sectors and specific enough to be useful

•	 Understanding the importance of being able to
apply standards to new development methodolo-
gies such as agile

•	 Learning that any documentation is the end
result of planning

•	 Learning that I do not know as much as I think
I do, and I can learn more

•	 Having colleagues and friends I often call upon
for advice and assistance

Bring on the next working group. I am ready.

BIOGRAPHY

Eva Freund� is president and CEO of The IV&V Group, Inc. She has
more than 20 years of verification and validation experience includ-
ing planning, monitoring, and controlling independent verification and
validation efforts for numerous federal agencies. Freund has taught
at the George Washington University and Goddard College. She served
as vice chair of the IEEE P829 (IEEE Standard for Software and System
Test Documentation) working group, an active member of the IEEE P730
(IEEE Standard for Software Quality Assurance Processes) working group,
and a long-time member of the IEEE P1012 (IEEE Standard for System
and Software Verification and Validation) working group. Freund is an
IEEE Certified Software Development Professional and an ASQ Certified
Software Quality Engineer (CSQE).

Software Engineering Curricular Guidelines
by Trudy Howles With Commentary by Jorge Díaz-Herrera

INTRODUCTION
A 2007 issue of Software Quality Professional featured an
article describing the challenges of teaching software qual-
ity assurance (SQA) topics in an undergraduate software
engineering (SE) program (Laporte, April, and Bencherif
2007). In the article, the authors cited various obstacles,
including the cost of materials and tools. Perhaps most
important, they wrote that SQA activities appeared to be
given a low priority in a typical SE curriculum.

Whether recruiting recent undergrads or welcoming
a new team member to a workgroup, what expertise
and skills can one expect from a recent graduate with

a bachelor of science degree in software engineering?
What topics are taught, and how much time is spent
on those topics? How much are students exposed to
“soft” skills, such as oral and written communication,
professionalism, and team dynamics?

Curricular guidelines do exist; at the time of this
writing, the current document is Software Engineering
2004 (Díaz-Herrera and Hilburn 2004). SE 2004 covers a
breadth of recommended knowledge areas, and includes
expected outcomes for evaluation. It is a very detailed
document that includes a discussion on how software
engineering fits as an engineering discipline, pedagogical

Q
u
a
li
t
y

N

u
g
g
e
t

www.asq.org 45

issues, and recommended course content. An update
to SE 2004 was recently released for public comment.
The update is currently in draft format, and is known as
Software Engineering 2013 (SE 2013). It seemed important
to summarize the curricular modifications, and examine
the new focus areas identified in the revised document.

The summary is followed by a commentary from Dr.
Jorge Díaz-Herrera. I invited his comments because he
served as a co-editor of SE 2004. He has an impressive
background in software. His complete bio appears at
the end of this article.

SOFTWARE
ENGINEEREING 2004
SE 2004 involved three major efforts:

1.	 Develop a set of curriculum outcomes includ-
ing a statement of what software engineering
graduates should know

2.	 Determine and specify the knowledge areas;
these are known as the Software Engineering
Education Knowledge (SEEK)

3.	 Define curricular recommendations on how to
structure the curriculum

A joint task force representing the Association
for Computing Machinery (ACM) and the Institute of
Electrical and Electronics Engineers (IEEE) started work
on the project in the fall of 2001, and the final version
was released in the summer of 2004. Table 1 shows the
SEEK areas defined in 2004.

Each of the SEEK knowledge units shown in Table
1 was accompanied with a suggested number of hours
of in-class time expected to present the material. An
hour was defined as an instructional hour during a
typical lecture. However, the authors added that the
hours reflected a minimum amount of coverage time,
and that the time did not include outside-of-class work
time (Díaz-Herrera and Hilburn 2004, 19).

THE REVIEW OF SE 2004
In early 2011, a review team was formed to review SE
2004. The review team was specifically charged to do
the following (Ardis et al. 2012, 2):

•	 Survey principal curriculum stakeholders to col-
lect feedback regarding needed modifications to
SE 2004. The review team targeted stakeholders
from academia and industry, and used several

methods to obtain the feedback (surveys, Web,
direct contacts).

•	 Analyze the feedback and determine what
actions should be taken.

•	 Report the findings to the IEEE-CS Educational
Activities Board and the ACM Education Board
outlining the proposed revisions, as well as a
statement of effort to implement the revisions.

TABLE 1	 SEEK knowledge areas defined in
SE 2004

Knowledge Area and Knowledge Units (Topics)

Computing essentials: computer science foundations
(programming fundamentals, algorithms and data
structures, problem-solving techniques, abstraction),
construction technologies (API design and use, code reuse,
assertions, error handling), construction tools (development
environments, GUI builders, unit testing, and profiling
tools), formal construction methods (application of abstract
machines and specification languages, refinement)

Mathematical and engineering fundamentals: math
foundations (relations and sets, graphs and trees,
number theory), engineering foundations for software
(measurement and metrics, engineering design),
engineering economics for software (generating system
objectives, evaluating cost-effective solutions)

Professional practice: group dynamics (team and group
dynamics, interacting with stakeholders), communication
skills specific to SE (reading, writing, oral and written
communication), professionalism (accreditation,
certification, licensing; codes of ethics and conduct)

Software modeling and analysis: modeling foundations
(modeling principles, invariants, mathematical models),
types of models (information and behavioral modeling,
domain and structure modeling), analysis fundamentals
(completeness, correctness, model checking), requirements
fundaments (requirements process, managing changing
requirements, requirements management), eliciting
requirements (elicitation techniques, identifying sources),
requirements specification and documentation (software
requirements specs, documentation basics), requirements
validation (reviews and inspections, validating product
quality attributes, acceptance test design)

Software design: design concepts, design strategies,
architectural design, human computer interface design,
detailed design, design support tools and evaluation

Software evolution: evolution processes, evolution activities

Software process: process concepts, process implementation

Software quality: software quality concepts and culture,
software quality standards, software quality processes,
process assurance, product assurance

Software management: management concepts, project
planning, project personnel and organization, project
control, software configuration management

www.asq.org

Q
u
a
li
t
y

N

u
g
g
e
t

46 SQP VOL. 16, NO. 3/© 2014, ASQ

The review team started by collecting data from
stakeholders from academia, industry, and government.
They created an online survey to determine priorities,
better understand how SE 2004 was currently being
used, and understand the background of the respondents
(Hislop et al. 2013).

The review team completed a respectable outreach
effort, reporting respondents from 42 countries that
included teachers, researchers, software developers, and
administrators. It was also interesting that respondents
reported varying years of experience: most reported more
than 12 years (56 percent); individuals with less than
three years’ experience were the next highest occurring
(13 percent) (Ardis et al. 2012, 3-5).

Based on the stakeholders’ feedback, it was deter-
mined that the necessary revisions were relatively minor.
The review team’s assessment was that fundamental
components of SE 2004 were “sound” and did not require
extensive changes (Ardis et al. 2012, 7).

There were, however, areas identified regarding
the amount of time spent on certain knowledge areas.
They reported that more time was needed studying the
fundaments of requirements. The survey also exposed
technology and culture changes such as the need to
incorporate “modern software development methods”
including agile methods, and a stronger emphasis on
security into the guidelines. They also acknowledged that
service-oriented computing is becoming more popular
and important, and also needed to be added (Ardis et al.
2012, 7). The actual changes to these topics are noted
in the following section.

SOFTWARE
ENGINEERING 2013
Based on the review team’s report, a project was initiated
to update SE 2004. A draft of the revised document,
Software Engineering 2013 (SE 2013) was released for
public comment in December of 2013. What follows are
Díaz-Herrera’s comments on the draft:

Díaz-Herrera’s Comments
The 2013 Software Engineering curricular guidelines
for undergraduate degree programs retained the same
volume structure as the original SE 2004 volume. There
were a few changes in some of the chapters. Chapters
1, 3, 5, 7, and 8 remained unchanged for the most part.
Chapters 2, 4, and 6 had the most substantive changes.

Chapter 2, “The Software Engineering Discipline,”
introduced a subtle change with an emphasis on con-
sidering software engineering a professional discipline.
“The term software engineering is not necessarily viewed
as a ‘professional’ activity. One of the concerns for these
curriculum guidelines is to help with the evolution of
software engineering towards a more ‘professional’
status.” This is a welcome change; however, the revision
did not go far enough. Although it is telling that the
discussion of (traditional) “engineering design” was
removed from this revision, it is not clear what is meant
by “professional status.”

“Could there be a basis for understanding the com-
plexity of software such that we can ‘engineer’ it to have
predictable quality and behavior?” The answer to this
fundamental question is unknown today.

We contend that software engineering can become
a “professional discipline” without it being a branch
of engineering. Indeed, it has been tempting to say
that as software engineering matures, it is becoming
an engineering discipline. Today, however, software
engineering is not widely considered as such, at least not
in the traditional sense. We have explored the definition
of software engineering fully (Díaz-Herrera and Freeman
Forthcoming) and have come to the conclusion that
software is different from much of engineering, although
there are some similarities (Díaz-Herrera 2009).

The lack of acceptance of software engineering
as a professional discipline probably has to do more
with our insistence in retrofitting, from the outset, a
fundamentally computing discipline with the traditional
“engineering” paradigm. In this way, we view computing
as a discipline on its own right, with software engineering
part of it, and separate from engineering or science, but
with elements of both.

Chapter 4, “Overview of Software Engineering
Education Knowledge,” understandably experienced the
most substantive changes from the original 2004 version.
It did reorganize one knowledge area, splitting it into
two areas; two knowledge areas were deleted, merging
the content elsewhere; another area was deleted entirely;
and a completely new knowledge area added. In this way:

•	 Requirements analysis and specification
became a new knowledge area with the cor-
responding knowledge units taken out of
the existing software modeling and analy-
sis knowledge area. Given the importance
of requirements, this change is justifiable,

Q
u
a
li
t
y

N

u
g
g
e
t

www.asq.org 47

elevating it from a knowledge unit to a knowl-
edge area level.

•	 The knowledge area software evolution was
removed and its topics incorporated into the
software process knowledge area. Evolution
fundamentally addresses “maintenance” issues
and, since changeability is one of the essential
problems in software, this change diminishes
its importance.

•	 The knowledge area software management was
also removed and its topics incorporated into
the software process knowledge area. Merging
software management issues into process blurs
the important distinction between project and
process control (McDonald Forthcoming). The
former refers to “overall management control
of entire software development projects.” The
latter is more focused on process control of
specific approaches to development that can be
applied to portions of a software project (e.g.,
coding, inspections, testing). Software devel-
opment projects must be planned, organized,
monitored, and controlled by their project
manager. Software development processes
define specific technical activities to develop a
product. “Controlling a project and controlling
the underlying processes are very different
activities, and consequently, they require very
different techniques to make them effective.”
We therefore do not support this change.

•	 The security knowledge area is new. Identifying
a new knowledge area for security may make
sense. However, security concerns span
the entire life cycle, and what we are really
talking about here is “software assurance”
(Mead, Shoemaker, and Woody Forthcoming).
According to the U.S. Committee on National
Security Systems, software assurance is “the
level of confidence that software is free from
vulnerabilities, either intentionally designed
into the software or accidentally inserted at
any time during its life cycle, and that the
software functions in the intended manner”
(CNSS 2010).

 Analysis of the topics in this new knowledge area
indicates that it may make sense to distribute these
topics across the curriculum—since security concerns
affect the entire software development cycle—in

corresponding parts such as security requirements,
secure design, secure construction, and so on. The unit
“Building security into the development cycle” fits in
the software process knowledge area, while “Security
fundamentals” can be part of the computing essentials
knowledge area. Incidentally, as proposed, there seems
to be not enough time devoted to the unit “Developing
secure software.”

• Finally, regarding Chapter 6, “Courses and
Course Sequences,” much of the material was deleted
and instead, the reader is explicitly directed to the
SE 2004 guidelines. This is not good practice since
the new SE 2013 should be a self-contained docu-
ment. We recommend that this material be included
as an appendix.

CONCLUSIONS
In summary, the new 2013 revision of the software
engineering curriculum guidelines represents a mod-
est improvement to the original 2014 guidelines. We
strongly recommend taking a stand that software
engineering is a professional discipline on its own
right. We also strongly suggest that the document
be self-contained with the aim of replacing the 2004
volume, that is, eliminate any reference to it in terms
of content.

One important note is that the documents reflect
guidelines, and not all SE programs are directly based
on the curricular guidelines. Certainly, other factors such
as accreditation requirements impact the curriculum
and amount of time spent on topics.

REFERENCES

�Ardis, M., D. Budgen, G. W. Hislop, R. McCauley, M. J. Sebern. 2012.
AC 2012-4645: Revisions to software engineering 2004: Curriculum
guidelines for undergraduate degree programs in software engineer-
ing. Available at: http://www.asee.org/public/.../8/papers/.../download/
SE2004ReviewFinal%20(4).pdf.

�CNSS. 2010. Committee on National Security Systems (CNSS). National
Information Assurance Glossary: CNSS instruction no. 4009. Available at
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf.

�Díaz-Herrera, J. L., and T. B. Hilburn, eds. 2004. Software engineering 2004.
Curriculum guidelines for undergraduate degree programs in software
engineering. A volume of the computing curricula series. Available at:
http://sites.computer.org/ccse/.

�Díaz-Herrera, J. L., and P. A. Freeman. Forthcoming. Discipline of soft-
ware engineering: An overview. In Handbook of Computer Science and
Software Engineering.

www.asq.org
http://www.asee.org/public
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
http://sites.computer.org/ccse

Q
u
a
li
t
y

N

u
g
g
e
t

48 SQP VOL. 16, NO. 3/© 2014, ASQ

�Díaz-Herrera, J. L. 2009. ACM SIGSOFT software engineering notes 34,
no. 5 (September).

�Hislop, G. W., M. Ardis, D. Budgen, M. J. Sebern, J. Offut, and W. Visser.
2013. Revision of the SE 2004 curriculum model. SIGCSE’13, March 6-9,
Denver, CO.

�Laporte, April, and Bencherif. 2007. Teaching software quality assurance
in an undergraduate software engineering program. Software Quality
Professional 9, no. 3:4-10.

�McDonald, J. Forthcoming. Project and process control. In Handbook of
Computer Science and Software Engineering.

�Mead, N. R., D. Shoemaker, and C. Woody. Forthcoming. Software assur-
ance. In Handbook of Computer Science and Software Engineering.

�SE. 2013. Draft for Public Review: Software engineering 2013. Curriculum
guidelines for undergraduate degree programs in software engineering: A
volume of the computing curricula series. Available at: http://computing-
portal.org/sites/default/files/SE2013Draft.pdf.

BIOGRAPHY

Jorge L. Díaz-Herrera� is president of Keuka College. He was previously
a professor and founding dean of the B. Thomas Golisano College of
Computing and Information Sciences at Rochester Institute of Technology
in Rochester, NY. Prior to this appointment, he was professor of computer
science and department head at SPSU in Atlanta and Yamacraw project
coordinator with Georgia Tech. He has had other academic appoint-
ments with Carnegie Mellon’s Software Engineering Institute, Monmouth
University in New Jersey, George Mason University in Virginia, and at SUNY
Binghamton in New York.

�Díaz-Herrera completed his undergraduate education in Venezuela,
and holds both a master’s and doctorate in computing studies from
Lancaster University in the United Kingdom. He recently completed the
graduate certificate in management leadership in education from Harvard
University’s Graduate School of Education. He also served as a writer
for the IEEE-CS Software Engineering Professional Examination, and has
global-wide consulting experience.

http://computingportal.org/sites/default/files/SE2013Draft.pdf
http://computingportal.org/sites/default/files/SE2013Draft.pdf

